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Breakup of two-dimensional into three-dimensional Kadomtsev-Petviashvili solitons

A. Senatorski and E. Infeld
Sołtan Institute for Nuclear Studies, Hoz˙a 69, 00–681 Warsaw, Poland

~Received 24 March 1997; revised manuscript received 15 January 1998!

This paper reports on three-dimensional simulations that follow exact,z-symmetric soliton solutions to an
important model equation of plasma physics and superfluid helium~Bose condensate!. This is the Kadomtsev-
Petviashvili equation. Solitons are seen to break up when perturbed alongz. Dependence of growth on the
wave number of the perpendicular perturbation is found numerically. This leads to a wave number producing
the maximum rate of breakup. Due to numerical instabilities, a somewhat smaller wave number must be used.
Fully three-dimensional entities are produced. After a while they become virtually identical to known, azi-
muthally symmetric solutions. Based on this, implications for the reconnection hypothesis formulated by
Feynman, used in superfluid helium II theory, are indicated.@S1063-651X~98!15905-6#

PACS number~s!: 03.40.Kf, 52.35.Sb, 47.20.Ky, 52.35.Py
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Solitons are sometimes described as the classical cou
parts of elementary particles. They are well researched c
pact entities that appear both in nature and in present
mathematical considerations of nonlinear, partial differen
equations.

The three-dimensional ~3D! Kadomtsev-Petviashvil
equation considered here@1# is

~nt16nnx1nxxx!x23~nyy1nzz!50. ~1!

This equation is known as KPI in three dimensions.
describes the dynamics of solitons and nonlinear waves
least two media~plasmas and superfluids! @2–4# about which
more follows. Equation~1! is usually much simpler than th
full set of equations it models. In deriving it for propagatin
phenomena, one assumes weak dispersion and that the
ton or nonlinear wave in question propagates along thx
axis. Changes iny andz are slower than in the direction o
motion. Equation~1! is integrable by inverse scattering whe
]z50. For an extensive discussion of the derivation of~1!
and some solutions, see Ref.@5#, Chaps. 5 and 8.

The KPI equation appears in plasma physics when
scribing small amplitude, fast magnetosonic~FMS! waves
propagating in a low-b (58pp/B2) magnetized plasma. I
these waves propagate at an angle with respect to the m
netic field, collapse may occur. Collapse mechanisms can
turn, lead to transfer of energy to the plasma ions. A be
understanding of these mechanisms is lacking. Certain
strictions, such as those of small amplitude, long wavelen
propagation velocity within a small interval around that f
linear FMS waves, wave frequency small as compared w
the ion cyclotron frequency, etc., are assumed when deriv
KPI in this context.

A second area where three-dimensional KPI appears is
condensate model of superfluid helium. The two- and thr
dimensional solitons of KPI then model degenerate limits
the vortex lines and rings, respectively, that have been
served there. In this context, KPI is derived as a limit of t
Nonlinear Schro¨dinger equation with cubic nonlinearity
which itself is a somewhat controversial though popu
model for superfluid helium II.~The KPI limit is obtained for
entities moving with velocities slightly below that of infin
571063-651X/98/57~5!/6050~6!/$15.00
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tesimal sound waves~called phonons.! At present, it would
seem that KPI is more firmly grounded in physical reality
the case of FMS waves as compared to the Bose conden
context. Nevertheless, we will come back to this latter, f
cinating context.

It is of interest when a line soliton distorts in three dime
sions and produces a known nonlinear structure. In
superfluid-helium context, this would correspond, if Eq.~1!
is to be accepted as a model, to a step toward answering
question of whether a line vortex pair of opposite polar
can break up and recombine into an array of vortex rings~or
else, say, one vortex ring and twoU-shaped vortices!. This is
a crucial question in He II theory.

ExactN-soliton solutions to both one- and two-space
mensional versions of Eq.~1! are well known. The one-
dimensional soliton,n(x2vt), is unstable in two dimension
@5# and its breakup into an array of two-dimensional, exa
soliton solutions has been demonstrated both analytically
numerically @6–8#. The two-dimensional soliton,n(x
2vt,y), is stable in two dimensions@9#.

It is natural to ask the generally more physical question
what happens in three dimensions. As the 1D soliton, hav
plane symmetry, is known to disintegrate into 2D entities
two dimensions, it should certainly break up somehow
three dimensions. The 2D soliton,n(x2vt,y), is known
from theory to be unstable in three dimensions@9# ~see the
Appendix!. However, perturbing it along thez axis in a
simulation, actually seeing it break up and following the d
bris all the way to a possible 3D structure, demands so
what cumbersome numerics. As far as we know, this has
yet been done. Instability of 3D, azimuthally symmetric so
tonshasbeen investigated numerically@4,10–12#. In contra-
distinction to the instability of the 2D soliton, which will be
seen to lead to complete destruction and formation of n
3D structures, the instability in question was found to lead
gradual collapse. This involves a steepening and narrow
but with some structure essentially conserved until a fi
implosion on the axis occurs. Some theoretical estimate
the general behavior involved can be found in@4# ~first ref-
erence!.

It might seem odd that simulations for distortion of the 3
soliton have been performed, whereas such simulations
6050 © 1998 The American Physical Society
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the 2D one have not. The explanation is in the symme
The 3D soliton behavior was studied inx, r @5(y2

1z2)1/2# space, neglectingu dependence. On the other han
disintegration of the 2D soliton in three-dimensional spa
can only be followed in a fully three-dimensional simulatio
which is much more time consuming. This task is the sub
of the present work.

Although we know from theory that our 2D soliton wi
disintegrate, there are at least three further questions t
addressed.

~1! What is the wave number of the perpendicular pert
bation leading to the shortest lifetime of the 2D soliton
three dimensions?~2! When this or a similar perturbation i
applied, will any products of the inevitable breakup be
bust?~3! If the answer to question~2! is affirmative, will any
robust fragments evolve to the 3D solutions, known appro
mately from the theory of@13#?

Shortly, we will answer question~1! with numerical simu-
lations. First, however, a few brief comments on questio
~2! and ~3! are in order. Recently, a similar 3D simulatio
was performed for a different model soliton equati
@Zakharov-Kuznietsov, which differs from~1! only in they
andz terms@14##. There, the answers to both questions w
affirmative. However, in that case, the 3D solitons we
known to be stable, in contradistinction to the present st
of Eq. ~1!. Thus, until we performed the simulation, we ha
to consider both questions,~2! and ~3!, as open.

The two-dimensional soliton solution to Eq.~1! @15# is

n~x,y,t !5
4n@12n~x23nt !21n2y2#

@11n~x23nt !21n2y2#2
, n.0. ~2!

Note thatn, which is theexcessover the mean density in~1!,
can be negative. Valleys appear around thex axis. As al-
ready mentioned, theory tells us that this soliton is unsta
in x,y,z,t. In the liquid helium context, Eq.~2! is the KPI
limit of an oppositely directed vortex pair solution of th
nonlinear Schro¨dinger equation.

The three-dimensional soliton somewhat resembles
~2! rotated around thex axis. However, known solutions ar
approximate@there is no exact formula resembling Eq.~2!
with y→r# @13#. This is not surprising, in view of the non
integrability of Eq.~1! in 3D. It is possible, however, to find
the form ofn in the far field by concentrating on the linea
terms in Eq.~1!. We find

n→const3
nr222~x23nt !2

@nr21~x23nt !2#5/2
. ~3!

The complete solution was found numerically in@13# as a
limit of the nonlinear Schro¨dinger equation solution~NLS
was solved by Chebyshev-Legendre series expansion!. The
constant density lines inx,r space somewhat resemble tho
drawn from Eq.~2! for x,y @compare Fig. 1~d! of Ref. @13#
with the bottom trace of our Fig. 1~a!#. The resemblence is
only qualitative. For example, large-denominator behav
from Eq. ~2! is

n→const
ny22~x23nt !2

@ny21~x23nt !2#2
. ~4!
.
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Because of the geometry, a coefficient in the numerator
the power of the denominator are different from those of E
~3!, but general behavior is similar.

Our calculations were performed on both a HP Apo
9000 model 720 workstation and on a Cray EL98. The n
merical algorithm used for calculating the time evolutio
was the leapfrog algorithm, applied when Eq.~1! was inte-
grated overx. Periodic boundary conditions were assume
More about the algorithm and its stability can be found in t
second of Ref.@8#. These 3D calculations took about a tho
sand computer hours.

The soliton~2! was wiggled alongz such that, att50, x
was replaced byx1dcos(kzz). We do not know the value o
kz , corresponding to the maximum growth rate of the ins
bility, from theory. Therefore, this critical ‘‘wavenumber’
was found numerically. The result is shown in Fig. 2~for
convenience, we actually used a smaller value ofkz in our
subsequent simulations, to avoid numerical instabilities@8#!.
The behavior for very smallkz in the figure is indicated by
an expansion calculation; see the Appendix. The two me
ods are complementary and give consistent results.

The Kadomtsev-Petviashvili equation is peculiar in th
even the initial conditions must fulfill an infinite set of con
straints. The most obvious one follows from anx integration:

¹'
2 E

2`

`

n dx50. ~5!

Our initial condition satisfies all these constraints. Aga
this aspect is discussed extensively in@8# ~for 2D; see also
@16# for theory!. One of the conclusions of Ref.@8# is that in
fact not satisfying them had little impact on the result. Ho
ever, here we do satisfy these constraints. Figure 1 sh
three-dimensional visualizations of three constant-n surfaces
as the perturbed soliton propagates. Two cross sections
ment each frame. The message is that the 2D soliton d
break up when perturbed along the third direction, produc
structures some of which are seen changing their symm
from z to u, though at different rates.

Note how little thex,y plane traces change during th
simulation. This was suggested by the similarity betwe
Eqs.~3! and~4!. At the same time, thex,z traces are chang
ing rapidly so as to mimic the contemporary ones forx,y.
After a while, a 3D soliton results from some of the fra
ments, rather like a butterfly emerging from a cocoon. This
confirmed by the cross sections. There is a recognizable
due of the 2D soliton trailing behind it. The new 3D solito
moves forward faster than both the parent 2D soliton and
residue.

The two cross sections of the 3D soliton are similar a
resemble those found numerically in Ref.@13#. Comparison
should be made between their 12r for the fourth frame of
Fig. 2 of @13# and ourn. ~Their parameterU50.69, whereas
KPI corresponds to small but positive 221/22U, as indeed it
is for this U value, for which it is 0.017.!

It is hard to say how the space array of 3D solitons w
depend on the boundary conditions in general. In our ca
lation, we obtained one emerging 3D soliton per box, th
the space period was just the height of the box. However,
cannot rule out the possibility that, with very differentkz ,
and hence different height, two or more 3D solitons could
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FIG. 1. ~Color! Consecutive stages of the evolution of a 2D soliton initially perturbed along thez axis. The equation of the perturbe
soliton att50 is given by Eq.~2! with x replaced byx1dcos(kzz). Heren5

17
6 , d50.12,kz51.4. Three surfaces of constantn (20.8, 1,

8.84! are seen. They are fort50, t50.094, andt50.140. The 2D soliton breaks up, producing new structures and debris. Some of the
fragments are changing their symmetry to finally produce a 3D soliton. Cross sections alongx,y ~bottom! andx,z ~top! are shown. Initially
the bottom ones correspond to constant-n lines as given by Eq.~2!. For halftones of stages intermediate between the first and second fra
see@17#.
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FIG. 1 ~Continued!.
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generated per box. Thus all we can say is that thez period
will in general be just the height of the box divided byn,
wheren is a natural number. Just hown will depend onkz is
an open question.

Recently the present authors prematurely published
sults of a simulation that ended before the 3D soliton w
formed. We erroneously surmised that this entity wou
probably not put in an appearance@17#. There is now no
doubt that it does~the present simulation ran for twice a
long as that of@17#!. According to@4,11#, it should gradually
collapse, steepening and narrowing. Our computational c
bilities did not even permit us to observe the onset of t
phenomenon~remember, the simulations of@4,13# were u
independent, whereas ours are not!. All we can say is that, on
the time scale of the dynamics we have observed, colla
must be very gradual.

With all the reservations mentioned above~nonlinear
Schrödinger being a controversial model for superfluid h
lium, KPI being just a limit of NLS!, our results nevertheles
strongly suggest that an oppositely polarized pair of line v
tices in 4He II can coalesce and then reconnect into an ar
of ring vortexes.

Up to now, reconnection, resulting in the formation
small ring vortices out of a pair of oppositely directed lin
vortices ~or two oppositely directed nearby sections of o
large distorted circular vortex! was simply postulated in
4He II theory @18,19#. Now we have a step-by-step indica
tion that this metamorphosis indeed takes place. This is
an indication, as the reconnection was found for the K
limit, at which NLS vortices degenerate. However, until
proves possible to isolate two opposed line vortices in4He II
e-
s

a-
s

se

-

-
y

st
I

and see them reconnect in an experiment, any theore
strengthening of the reconnection hypothesis should be
some importance.~Such reconnection has been observed i
very different context, the vortex trail of a B-47 aircraft@20#.
Theoretical work has been done in regular fluid dynam
@21#.!
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APPENDIX

The general nature of the onset of instability can be
vestigated theoretically for smallkz @5#. We expand inkz and
assume that the expansion of the growth rate begins w
g1;kz . Although the numerical calculations of this pap
take us far beyond the linear regime, our result may g
some indication of how Fig. 2 should look near the left-ha
edge. We include the calculation here, as both referen
known to us give incorrect results@9,10#. ~Reference@9# is at
least essentially correct, but gets the coefficient wrong
well as being too brief to follow easily.!

We perturb Eq.~1! around a solution~2! for somen. Thus

n5n0~x2vt,y!1dne~gt1 ikzz!, v53n. ~A1!
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We obtain, after linearization,

Ldn52gdnx23kz
2dn, ~A2!

L5]x
2@2v16n01]x

2#23]y
2 . ~A3!

We now expand inkz

g5g1kz1g2kz
21•••, dn5dn01kzdn11•••,

~A4!

and so

Ldn050. ~A5!

Usually expansions of this type lead to dispersion relati
g5g(k) at second order@5#. Equation~A5! is solved by

FIG. 2. The maximum value ofdn/dn0 of an unstable pertur-
bation for fixed time of the run,T50.01, as a function ofkzn

21.
We see that the most unstable normalized wave numberkzn

21 is
near 4. The value ofkzn

21 used in our simulation was 0.5, a
smaller length scales lead to numerical instabilities. We infer t
the process described in the preceding figure is fastest when
length scale of the perturbation is eight times shorter than ours.
line on the left corresponds to the linear, small-wave-number li
given by Eq.~A8!. This figure was feasible due to the extreme
small value ofT. For largerT and kzn

21 much larger than 0.5
numerical instabilities would set in. Variables are dimensionle
~Here th5theory and cp5computer generated.!
k.

y

d

s

dn05anx1bny1r~nv21/6!.

The third function fails to vanish at infinity. There are tw
physical eigenmodes,nx andny ~we drop the zero subscript!.
This dualism often leads to one unstable and one sta
mode, e.g.,@22#. In Chap. 2 of@10#, the authors claim to trea
the stability of theny mode, and would have it be stable fo
our sign of the dispersion. However, their calculation
flawed, as the adjoint ofL is miscalculated. In actual fact
only the nx mode leads to a relation betweeng and kz in
second order of the expansion. We now proceed to find t

Takedn05nx , leading to

dn152g1~snv1b!, s16b51, ~A6!

in first order of~A2!. Once again, the second component c
be discarded as being unphysical. Thusb50, s51. In sec-
ond order, Eq.~A2! yields

Ldn25g1
2nvx2g2nxx23kz

2nx . ~A7!

We now need the eigenfunctions of the adjoint of the ope
tor L. The only eigenfunction that vanishes at infinity
]x

21n. When we multiply Eq.~A7! by this function on the
left and integrate twice by parts, the whole left-hand s
vanishes. Using the form ofn, Eq. ~2!, we obtain as a con-
sistency condition on the right-hand side

g156n1/2kz , ~A8!

for the nx mode, which in any case is the linear limit of ou
perturbation as used in Fig. 1. This augments the beha
found numerically, as there is a limit on the length of
perturbation in a simulation; see Fig. 2.

The linear growth rate might seem to be slightly too larg
An explanation of how this can come about can be found
@22# ~it concerns the periodic boundary conditions of a sim
lation!. Nonlinear behavior takes over very soon@17#.

Calculations such as the above can be rendered m
more rigorous@23#. This will be the subject of a separat
paper@24#. However, the treatment of@23# does validate val-
ues ofg1 obtained by the above, less rigorous, calculation
a somewhat similar context in which the strongest secu
terms only are removed. It transpires that a more rigor
treatment leavesg1 intact.
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